Corrigendum: Circadian control of bile acid synthesis by a KLF15-Fgf15 axis
نویسندگان
چکیده
This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ DOI: 10.1038/ncomms9270 OPEN
منابع مشابه
Circadian control of bile acid synthesis by a KLF15-Fgf15 axis
Circadian control of nutrient availability is critical to efficiently meet the energetic demands of an organism. Production of bile acids (BAs), which facilitate digestion and absorption of nutrients, is a major regulator of this process. Here we identify a KLF15-Fgf15 signalling axis that regulates circadian BA production. Systemic Klf15 deficiency disrupted circadian expression of key BA synt...
متن کاملFXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption.
Bile acid malabsorption, which in patients leads to excessive fecal bile acid excretion and diarrhea, is characterized by a vicious cycle in which the feedback regulation of bile acid synthesis is interrupted, resulting in additional bile acid production. Feedback regulation of bile acid synthesis is under the control of an endocrine pathway wherein activation of the nuclear bile acid receptor,...
متن کاملPPARα-UGT axis activation represses intestinal FXR-FGF15 feedback signalling and exacerbates experimental colitis
Bile acids play a pivotal role in the pathological development of inflammatory bowel disease (IBD). However, the mechanism of bile acid dysregulation in IBD remains unanswered. Here we show that intestinal peroxisome proliferator-activated receptor α (PPARα)-UDP-glucuronosyltransferases (UGTs) signalling is an important determinant of bile acid homeostasis. Dextran sulphate sodium (DSS)-induced...
متن کاملRegulation of Bile Acid Synthesis by Fat-soluble Vitamins A and D*
Bile acids are required for proper absorption of dietary lipids, including fat-soluble vitamins. Here, we show that the dietary vitamins A and D inhibit bile acid synthesis by repressing hepatic expression of the rate-limiting enzyme CYP7A1. Receptors for vitamin A and D induced expression of Fgf15, an intestine-derived hormone that acts on liver to inhibit Cyp7a1. These effects were mediated t...
متن کاملAdministration of ampicillin elevates hepatic primary bile acid synthesis through suppression of ileal fibroblast growth factor 15 expression.
Administration of the antibacterial drug ampicillin (ABPC) significantly increased hepatic bile acid concentrations. In the present study, we investigated the mechanisms for the elevation of bile acid levels in ABPC-treated mice. Hepatic microsomal cholesterol 7alpha-hydroxylation and CYP7A1 mRNA level were increased 2.0-fold in ABPC-treated mice despite higher bile acid levels in the liver and...
متن کامل